A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b6f complex of oxygenic photosynthesis.

نویسندگان

  • Huamin Zhang
  • Genji Kurisu
  • Janet L Smith
  • William A Cramer
چکیده

The paucity of integral membrane protein structures creates a major bioinformatics gap, whose origin is the difficulty of crystallizing these detergent-solubilized proteins. The problem is particularly formidable for hetero-oligomeric integral membrane proteins, where crystallization is impeded by the heterogeneity and instability of the protein subunits and the small lateral pressure imposed by the detergent micelle envelope that surrounds the hydrophobic domain. In studies of the hetero (eight subunit)-dimeric 220,000 molecular weight cytochrome b(6)f complex, derived from the thermophilic cyanobacterium, Mastigocladus laminosus, crystals of the complex in an intact state could not be obtained from highly purified delipidated complex despite exhaustive screening. Crystals of proteolyzed complex could be obtained that grew very slowly and diffracted poorly. Addition to the purified lipid-depleted complex of a small amount of synthetic nonnative lipid, dioleolyl-phosphatidylcholine, resulted in a dramatic improvement in crystallization efficiency. Large crystals of the intact complex grew overnight, whose diffraction parameters are as follows: 94% complete at 3.40 A spacing; R(merge) = 8.8% (38.5%), space group, P6(1)22; and unit cell parameters, a = b = 156.3 A, c = 364.0 A, alpha = beta = 90 degrees, gamma = 120 degrees. It is proposed that the methodology of augmentation of a well-defined lipid-depleted integral membrane protein complex with synthetic nonnative lipid, which can provide conformational stability to the protein complex, may be of general use in the crystallization of integral membrane proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS.

The cytochrome b6f complex functions in oxygenic photosynthetic membranes as the redox link between the photosynthetic reaction center complexes II and I and also functions in proton translocation. It is an ideal integral membrane protein complex in which to study structure and function because of the existence of a large amount of primary sequence data, purified complex, the emergence of struc...

متن کامل

Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity.

The cytochrome b6f complex provides the electronic connection between the photosystem I and photosystem II reaction centers of oxygenic photosynthesis and generates a transmembrane electrochemical proton gradient for adenosine triphosphate synthesis. A 3.0 angstrom crystal structure of the dimeric b6f complex from the thermophilic cyanobacterium Mastigocladus laminosus reveals a large quinone e...

متن کامل

Ultrafast optical pump-probe studies of the cytochrome b(6)f complex in solution and crystalline states.

The cytochrome b6f complex of oxygenic photosynthesis contains a single chlorophyll a (Chl a) molecule whose function is presently unknown. The singlet excited state of the Chl a molecule is quenched by the surrounding protein matrix, and thus the Chl a molecule in the b6f complex may serve as an exceptionally sensitive probe of the protein structure. For the first time, singlet excited-state d...

متن کامل

A specific c-type cytochrome maturation system is required for oxygenic photosynthesis.

Oxygenic photosynthesis is an important bioenergetic process that maintains the Earth's atmosphere and allows carbon fixation. A critical enzyme in this process, the cytochrome b(6)f complex, differs from other protein complexes of the same family by an unusual covalently attached cofactor chemically defined as a c' heme. We have identified a set of pioneer proteins that carry the biogenesis of...

متن کامل

The structure of photosystem I and evolution of photosynthesis.

Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process--the conversion of sunlight into chemical energy--is driven by four multi-subunit membrane protein complexes named photosystem I, photosystem II, cytochrome b(6)f complex and F-ATPase. Photosystem I generates the most negative redox potential in nature and thus largely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 9  شماره 

صفحات  -

تاریخ انتشار 2003